Add like
Add dislike
Add to saved papers

PS-MPs promotes the progression of inflammation and fibrosis in diabetic nephropathy through NLRP3/Caspase-1 and TGF-β1/Smad2/3 signaling pathways.

BACKGROUND: Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD). Understanding the progressive etiology of DN is critical for the development of effective health policies and interventions. Recent research indicated that polystyrene microplastics (PS-MPs) contaminate our diets and accumulate in various organs, including the liver, kidneys, and muscles.

METHODS: In this study, ten-week-old db/db mice and db/m mice were fed. Besides, db/db mice were divided into two groups: PS-MPs group (oral administration of 0.5 µm PS-MPs) and an H2 O group, and they were fed for three months. A type II diabetes model was established using db/db mice to investigate the effects of PS-MPs on body weight, blood glucose level, renal function, and renal fibrosis.

RESULTS: The results demonstrated that PS-MPs significantly exacerbated various biochemical indicators of renal tissue damage, including fasting blood glucose, serum creatinine, blood urea nitrogen, and blood uric acid. Additionally, PS-MPs worsened the pathological alterations and degree of fibrosis in renal tissue. An increased oxidative stress state and elevated levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1) were identified. Furthermore, PS-MPs significantly enhanced renal fibrosis by inhibiting the transition from epithelial cells to mesenchymal cells, specifically through the inhibition of the TGF-β/Smad signaling pathway. The expression levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, and cleaved Caspase-1, which are inflammasome proteins, were significantly elevated in the PS-MPs group.

CONCLUSION: The findings suggested that PS-MPs could aggravate kidney injury and renal fibrosis in db/db mice by promoting NLRP3/Caspase-1 and TGF-β1/Smads signaling pathways. These findings had implications for elucidating the role of PS-MPs in DN progression, underscoring the necessity for additional research and public health interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app