Add like
Add dislike
Add to saved papers

Metabolomic analysis reveals the biological characteristics of giant congenital melanocytic nevi.

Giant congenital melanocytic nevi (GCMN) is a congenital cutaneous developmental deformity tumor that usually occurs at birth or in the first few weeks after birth, but its pathogenesis is still unclear. In this study, nuclear magnetic resonance-based metabolomics strategy was employed to evaluate the metabolic variations in serum and urine of the GCMN patients in order to understand its underlying biochemical mechanism and provide a potential intervention idea. Twenty-nine metabolites were observed to change significantly in serum and urine metabolomes, which are mainly involved in a variety of metabolic pathways including glyoxylate and dicarboxylate metabolism, TCA cycle and metabolisms of amino acids. The substantial cores of all the disturbed metabolic pathways are related to amino acid metabolism and carbohydrate metabolism and regulate the physiological state of the GCMN patients. Our results provide the physiological basis and physiological responses of GCMN and will be helpful for better understanding the molecular mechanisms of GCMN in future research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app