Add like
Add dislike
Add to saved papers

Effect of MCH1, a fatty-acid amide hydrolase inhibitor, on the depressive-like behavior and gene expression of endocannabinoid and dopaminergic-signaling system in the mouse nucleus accumbens.

MCH1 is a synthetic macamide that has shown in vitro inhibitory activity on fatty acid amide hydrolase (FAAH), an enzyme responsible for endocannabinoid metabolism. This inhibition can modulate endocannabinoid and dopamine signaling in the nucleus accumbens (NAc), potentially having an antidepressant-like effect. The present study aimed to evaluate the effect of the in vivo administration of MCH1 (3, 10, and 30 mg/kg, ip) in 2-month-old BALB/c male mice (n=97) on forced swimming test (FST), light-dark box (LDB), and open field test (OFT) and on early gene expression changes 2 h after drug injection related to the endocannabinoid system (Cnr1 and Faah) and dopaminergic signaling (Drd1 and Drd2) in the NAc core. We found that the 10 mg/kg MCH1 dose reduced the immobility time compared to the vehicle group in the FST with no effect on anxiety-like behaviors measured in the LDB or OFT. However, a 10 mg/kg MCH1 dose increased locomotor activity in the OFT compared to the vehicle. Moreover, RT-qPCR results showed that the 30 mg/kg MCH1 dose increased Faah gene expression by 2.8-fold, and 10 mg/kg MCH1 increased the Cnr1 gene expression by 4.3-fold compared to the vehicle. No changes were observed in the expression of the Drd1 and Drd2 genes in the NAc at either MCH1 dose. These results indicated that MCH1 might have an antidepressant-like effect without an anxiogenic effect and induces significant changes in endocannabinoid-related genes but not in genes of the dopaminergic signaling system in the NAc of mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app