Add like
Add dislike
Add to saved papers

Toward Low-Voltage and High-Sensitivity Direct X-ray Detectors Based on Thick Bulk Heterojunction Organic Device.

Organic semiconducting materials are promising for the fabrication of flexible ionizing radiation detectors for imaging because of their tissue equivalence, simple large-scale processing, and mass production. However, it is challenging to achieve high-sensitivity detection for organic direct detectors prepared by low-cost solution processing because of the compromise between thickness and carrier transport. In this study, high-performance organic direct X-ray detectors were fabricated by building a micrometer-thick bulk heterojunction (BHJ) using poly(3-hexylthiophene-2,5-diyl) (P3HT):(6,6)-phenyl c71 butyric acid methyl ester. A 5 μm BHJ film was fabricated by drop-casting and enhanced crystallization of P3HT using binary solvents and high-boiling-point additives to improve the charge carrier mobility. Furthermore, this organic direct X-ray detector has a sensitivity of >654.26 μC Gyair s-1 and a self-powered response. Because of the architecture of the thick active layer and the energy cascade in this diode detector, it has a very low dark current of 46.26 pA at -2 V. A fast and efficient approach was developed for fabricating thick, highly mobile organic BHJ films for high-performance direct X-ray detectors. It has great potential for application in a new generation of flexible and portable large-area flat-panel detectors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app