Add like
Add dislike
Add to saved papers

Ultrasensitive stretchable bimodal sensor based on novel elastomer and ionic liquid for temperature and humidity detection.

Heliyon 2024 Februrary 30
In this work, we present a novel stretchable bimodal sensor that can simultaneously detect temperature and humidity changes based on poly-hydroxyethyl acrylate (PHEA) elastomer infused with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid. The sensor exhibits high transparency, stability, and biocompatibility, as well as excellent mechanical and sensing properties. The sensor can achieve a maximum strain of 761%, a sensitivity of 4.5%/°C at room temperature, a detection range from -35 to 120 °C, and a response time of 10 ms. The sensor is able to provide acute response to movement of human hand at close range and can detect temperature changes as small as 0.004 °C in the range of 20-30 °C. The sensor also responds to humidity change, showing a high sensitivity to humidity change of 4.4%/RH% under the temperature of 30 °C. The sensor can be used for various applications in wearable electronics, human-machine interfaces, and soft robotics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app