Add like
Add dislike
Add to saved papers

Improved QSAR models for PARP-1 inhibition using data balancing, interpretable machine learning, and matched molecular pair analysis.

Molecular Diversity 2024 Februrary 21
The poly (ADP-ribose) polymerase-1 (PARP-1) enzyme is an important target in the treatment of breast cancer. Currently, treatment options include the drugs Olaparib, Niraparib, Rucaparib, and Talazoparib; however, these drugs can cause severe side effects including hematological toxicity and cardiotoxicity. Although in silico models for the prediction of PARP-1 activity have been developed, the drawbacks of these models include low specificity, a narrow applicability domain, and a lack of interpretability. To address these issues, a comprehensive machine learning (ML)-based quantitative structure-activity relationship (QSAR) approach for the informed prediction of PARP-1 activity is presented. Classification models built using the Synthetic Minority Oversampling Technique (SMOTE) for data balancing gave robust and predictive models based on the K-nearest neighbor algorithm (accuracy 0.86, sensitivity 0.88, specificity 0.80). Regression models were built on structurally congeneric datasets, with the models for the phthalazinone class and fused cyclic compounds giving the best performance. In accordance with the Organization for Economic Cooperation and Development (OECD) guidelines, a mechanistic interpretation is proposed using the Shapley Additive Explanations (SHAP) to identify the important topological features to differentiate between PARP-1 actives and inactives. Moreover, an analysis of the PARP-1 dataset revealed the prevalence of activity cliffs, which possibly negatively impacts the model's predictive performance. Finally, a set of chemical transformation rules were extracted using the matched molecular pair analysis (MMPA) which provided mechanistic insights and can guide medicinal chemists in the design of novel PARP-1 inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app