Add like
Add dislike
Add to saved papers

Relationship Between Donor Derived Cell-Free DNA and Tissue-Based Rejection-Related Transcripts In Heart Transplantation.

INTRODUCTION: Endomyocardial biopsy (EMB)-based traditional microscopy remains the gold standard for the detection of cardiac allograft rejection, despite its limitation of inherent subjectivity leading to inter-reader variability. Alternative techniques now exist to surveil for allograft injury and classify rejection. Donor-derived cell-free DNA (dd-cfDNA) testing is now a validated blood-based assay used to surveil for allograft injury. The molecular microscope diagnostic system (MMDx) utilizes intragraft rejection-associated transcripts (RATs) to classify allograft rejection and identify injury. The use of dd-cfDNA and MMDx together provides objective molecular insight into allograft injury and rejection. The aim of this study was to measure the diagnostic agreement between dd-cfDNA and MMDx and assess the relationship between dd-cfDNA and MMDx-derived RATs which may provide further insight into the pathophysiology of allograft rejection and injury.

METHODS: This is a retrospective observational study of 156 endomyocardial biopsy (EMB) evaluated with traditional microscopy and MMDx. All samples were paired with dd-cfDNA from peripheral blood prior to EMB (up to 9 days). Diagnostic agreement between traditional histopathology, MMDx, and dd-cfDNA (threshold of 0.20%) were compared for assessment of allograft injury. In addition, the relationship between dd-cfDNA and individual RAT expression levels from MMDx was evaluated.

RESULTS: MMDx characterized allograft tissue as no rejection (NR) (62.8%), antibody-mediated rejection (ABMR) (26.9%), T-cell-mediated rejection (TCMR) (5.8%), and mixed ABMR/ TCMR (4.5%). For the diagnosis of any type of rejection (TCMR, ABMR, and mixed rejection), there was substantial agreement between MMDx and dd-cfDNA (76.3% agreement). All transcript clusters (group of gene sets designated by MMDx) and individual transcripts considered abnormal from MMDx had significantly elevated dd-cfDNA. In addition, a positive correlation between dd-cfDNA levels and certain MMDx-derived RATs was observed. Tissue transcript clusters correlated with dd-cfDNA scores, including DSAST, GRIT, HT1, QCMAT and S4. For individual transcripts, tissue ROBO4 was significantly correlated with dd-cfDNA in both non-rejection and rejection as assessed by MMDx.

CONCLUSION: Collectively, we have shown substantial diagnostic agreement between dd-cfDNA and MMDx. Furthermore, based on the findings presented, we postulate a common pathway between the release of dd-cfDNA and expression of ROBO4 (a vascular endothelial-specific gene that stabilizes the vasculature) in the setting of antibody-mediated rejection (AMR), which may provide a mechanistic rationale for observed elevations in dd-cfDNA in AMR, compared to acute cellular rejection (ACR).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app