Add like
Add dislike
Add to saved papers

Enhancing squat movement classification performance with a gated long-short term memory with transformer network model.

Sports Biomechanics 2024 Februrary 20
Bodyweight squat is one of the basic sports training exercises. Automatic classification of aberrant squat movements can guide safe and effective bodyweight squat exercise in sports training. This study presents a novel gated long-short term memory with transformer network (GLTN) model for the classification of bodyweight squat movements. Twenty-two healthy young male participants were involved in an experimental study, where they were instructed to perform bodyweight squat in nine different movement patterns, including one acceptable movement defined according to the National Strength and Conditioning Association and eight aberrant movements. Data were acquired from four customised inertial measurement units placed at the thorax, waist, right thigh, and right shank, with a sampling frequency of 200 Hz. The results show that compared to state-of-art deep learning models, our model enhances squat movement classification performance with 96.34% accuracy, 96.31% precision, 96.45% recall, and 96.32% F-score. The proposed model provides a feasible wearable solution to monitoring aberrant squat movements that can facilitate performance and injury risk assessment during sports training. However, this model should not serve as a one-size-fits-all solution, and coaches and practitioners should consider individual's specific needs and training goals when using it.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app