Add like
Add dislike
Add to saved papers

Potential Effects of Orally Ingesting Polyethylene Terephthalate Microplastics on the Mouse Heart.

Cardiovascular Toxicology 2024 Februrary 20
Polyethylene terephthalate microplastics (PET MPs) are widespread in natural environment, and can enter organisms and accumulate in the body, but its toxicity has not been well studied. Therefore, in order to investigate the toxic effects of PET microplastics on mammals, this study investigated the toxic effects of PET MPs on ICR mice and H9C2 cells by different treatment groups. The results indicated the cardiac tissue of mice in the PET-H (50 µg/mL) group showed significant capillary congestion, myocardial fiber breakage, and even significant fibrosis compared to the PET-C (control) group (P < 0.01). Results of the TUNEL assay demonstrated significant apoptosis in myocardial tissue in the PET-H and PET-M (5 µg/mL) groups (P < 0.01). Meanwhile, Western blotting showed increased expression of the apoptosis-related protein Bax and decreased expression of PARP, caspase-3, and Bcl-2 proteins in both myocardial tissues and H9C2 cells. In addition, flow cytometry confirmed that PET MPs decreased the mitochondrial membrane potential and apoptosis in H9C2 cells; however, this trend was reversed by N-acetylcysteamine application. Moreover, PET MP treatment induced the accumulation of reactive oxygen species (ROS) in H9C2 cells, while the MDA level in the myocardial tissue was elevated, and the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were decreased (P < 0.01), indicating a change in the redox environment. In conclusion, PET MPs promoted cardiomyocyte apoptosis by inducing oxidative stress and activating mitochondria-mediated apoptotic processes, ultimately leading to myocardial fibrosis. This study provides ideas for the prevention of PET MP toxicity and promotes thinking about enhancing plastic pollution control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app