Add like
Add dislike
Add to saved papers

Growth differentiation factor-11 upregulates matrix metalloproteinase 2 expression by inducing Snail in human extravillous trophoblast cells.

The human extravillous trophoblast (EVT) cell invasion is an important process during placentation. Although the placenta is normal tissue, the EVT cells exhibit some features common to cancer cells, including high migratory and invasive properties. Snail and Slug are transcription factors that mediate the epithelial-mesenchymal transition (EMT), a crucial event for cancer cell migration and invasion. It has been shown that GDF-11-indued matrix metalloproteinase 2 (MMP2) expression is required for EVT cell invasion. Whether GDF-11 can regulate Snail and Slug expression in human EVT cells remains unknown. If it does, the involvement of Snail and Slug in GDF-11-induced MMP2 expression and EVT cell invasion must also be defined. In the present study, using the immortalized human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells as experimental models, our results show that GDF-11 upregulates Snail and Slug expression. ALK4 and ALK5 mediate the stimulatory effects of GDF-11 on Snail and Slug expression. In addition, we demonstrate that SMAD2 and SMAD3 are required for the GDF-11-upregulated Snail expression, while only SMAD3 is involved in GDF-11-induced Slug expression. Moreover, our results reveal that Snail mediates GDF-11-induced MMP2 expression and cell invasion but not Slug. This study increases our understanding of the biological function of GDF-11 in human EVT cells and provides a novel mechanism for regulating MMP2 and EVT cell invasion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app