Add like
Add dislike
Add to saved papers

Triple Cross-Linking Engineering Strategies for Efficient and Stable Inverted Flexible Perovskite Solar Cells.

Small 2024 Februrary 18
Inverted flexible perovskite solar cells (fPSCs) are promising for commercialization due to their low cost, lightweight, and excellent stability. However, enhancing fPSCs' power conversion efficiency and stability remains challenging. Here, an unprecedented triple cross-linking engineering strategy is innovatively exhibit for efficient and stable inverted fPSCs. First, a carefully designed cross-linker, 4-fluorophenyl 5-(1,2-dithiolan-3-yl) pentanoate (FB-TA), is added to the perovskite precursor solution. During the perovskite film's crystallization at a low temperature, the cross-linking product of FB-TA can passivate the grain boundaries and reduce the film's residual strain and Young's module. Then, FB-TA is also introduced for the bottom- and top-interface modification of the perovskite film. The interfacial treating strategy protects the perovskite from water invasion and strengthens the interfaces. The combination of triple strategies affords highly efficient inverted fPSCs with a champion efficiency of 21.42% among the state-of-the-art inverted fPSCs based on nickel oxides. More importantly, the flexible devices also exhibit superior stabilities with T90 >4000 bending cycles, photostability with T90 >568 h, and ambient stability with T90 >2000 h, especially the stability with T80 >1120 h under harsh damp-heat conditions (i.e., 85 °C and 85% RH). The strategy provides new insights into the industrialization of high-performance and stable fPSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app