Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Canonical Wnt signaling directs the generation of functional human PSC-derived atrioventricular canal cardiomyocytes in bioprinted cardiac tissues.

Cell Stem Cell 2024 March 8
The creation of a functional 3D bioprinted human heart remains challenging, largely due to the lack of some crucial cardiac cell types, including the atrioventricular canal (AVC) cardiomyocytes, which are essential to slow down the electrical impulse between the atrium and ventricle. By utilizing single-cell RNA sequencing analysis and a 3D bioprinting technology, we discover that stage-specific activation of canonical Wnt signaling creates functional AVC cardiomyocytes derived from human pluripotent stem cells. These cardiomyocytes display morphological characteristics and express molecular markers of AVC cardiomyocytes, including transcription factors TBX2 and MSX2. When bioprinted in prefabricated cardiac tissues, these cardiomyocytes successfully delay the electrical impulse, demonstrating their capability of functioning as the AVC cardiomyocytes in vitro. Thus, these findings not only identify canonical Wnt signaling as a key regulator of the AVC cardiomyocyte differentiation in vitro, but, more importantly, provide a critical cellular source for the biofabrication of a functional human heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app