Add like
Add dislike
Add to saved papers

Molecular regulatory mechanisms of staminate strobilus development and dehiscence in Torreya grandis.

Plant Physiology 2024 Februrary 15
Gymnosperms are mostly dioecious, and their staminate strobili undergo a longer developmental period than those of angiosperms. However, the underlying molecular mechanisms remain unclear. This study aimed to identify key genes and pathways involved in staminate strobilus development and dehiscence in Torreya grandis. Through weighted gene co-expression network analysis (WGCNA), we identified fast elongation-related genes enriched in carbon metabolism and auxin signal transduction, whereas dehiscence-related genes were abundant in alpha-linolenic acid metabolism and the phenylpropanoid pathway. Based on WGCNA, we also identified PHYTOCHROME-INTERACTING FACTOR4 (TgPIF4) as a potential regulator for fast elongation of staminate strobilus and two WRKY proteins (TgWRKY3 and TgWRKY31) as potential regulators for staminate strobilus dehiscence. Multiple protein-DNA interaction analyses showed that TgPIF4 directly activates expression of TRANSPORT INHIBITOR RESPONSE2 (TgTIR2) and NADP-MALIC ENZYME (TgNADP-ME). Overexpression of TgPIF4 significantly promoted staminate strobilus elongation by elevating auxin signal transduction and pyruvate content. TgWRKY3 and TgWRKY31 bind to the promoters of the lignin biosynthesis gene PHENYLALANINE AMMONIA-LYASE (TgPAL) and jasmonic acid metabolism gene JASMONATE O-METHYLTRANSFERASE (TgJMT), respectively, and directly activate their transcription. Overexpression of TgWRKY3 and TgWRKY31 in the staminate strobilus led to early dehiscence, accompanied by increased lignin and methyl jasmonate levels respectively. Collectively, our findings offer a perspective for understanding the growth of staminate strobili in gymnosperms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app