Add like
Add dislike
Add to saved papers

Multiobjective tree-based reinforcement learning for estimating tolerant dynamic treatment regimes.

Biometrics 2024 January 30
A dynamic treatment regime (DTR) is a sequence of treatment decision rules that dictate individualized treatments based on evolving treatment and covariate history. It provides a vehicle for optimizing a clinical decision support system and fits well into the broader paradigm of personalized medicine. However, many real-world problems involve multiple competing priorities, and decision rules differ when trade-offs are present. Correspondingly, there may be more than one feasible decision that leads to empirically sufficient optimization. In this paper, we propose a concept of "tolerant regime," which provides a set of individualized feasible decision rules under a prespecified tolerance rate. A multiobjective tree-based reinforcement learning (MOT-RL) method is developed to directly estimate the tolerant DTR (tDTR) that optimizes multiple objectives in a multistage multitreatment setting. At each stage, MOT-RL constructs an unsupervised decision tree by modeling the counterfactual mean outcome of each objective via semiparametric regression and maximizing a purity measure constructed by the scalarized augmented inverse probability weighted estimators (SAIPWE). The algorithm is implemented in a backward inductive manner through multiple decision stages, and it estimates the optimal DTR and tDTR depending on the decision-maker's preferences. Multiobjective tree-based reinforcement learning is robust, efficient, easy-to-interpret, and flexible to different settings. We apply MOT-RL to evaluate 2-stage chemotherapy regimes that reduce disease burden and prolong survival for advanced prostate cancer patients using a dataset collected at MD Anderson Cancer Center.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app