Add like
Add dislike
Add to saved papers

Microbial pathways of nitrous oxide emissions and mitigation approaches in drylands.

Drylands refer to water scarcity and low nutrient levels, and their plant and biocrust distribution is highly diverse, making the microbial processes that shape dryland functionality particularly unique compared to other ecosystems. Drylands are constraint for sustainable agriculture and risk for food security, and expected to increase over time. Nitrous oxide (N2 O), a potent greenhouse gas with ozone reduction potential, is significantly influenced by microbial communities in drylands. However, our understanding of the biological mechanisms and processes behind N2 O emissions in these areas is limited, despite the fact that they highly account for total gaseous nitrogen (N) emissions on Earth. This review aims to illustrate the important biological pathways and microbial players that regulate N2 O emissions in drylands, and explores how these pathways might be influenced by global changes for example N deposition, extreme weather events, and climate warming. Additionally, we propose a theoretical framework for manipulating the dryland microbial community to effectively reduce N2 O emissions using evolving techniques that offer inordinate specificity and efficacy. By combining expertise from different disciplines, these exertions will facilitate the advancement of innovative and environmentally friendly microbiome-based solutions for future climate change vindication approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app