Add like
Add dislike
Add to saved papers

Anciently duplicated genes continuously recruited to heart expression in vertebrate evolution are associated with heart chamber increase.

Although gene/genome duplications in the early stage of vertebrates have been thought to provide major resources of raw genetic materials for evolutionary innovations, it is unclear whether they continuously contribute to the evolution of morphological complexity during the course of vertebrate evolution, such as the evolution from two heart chambers (fishes) to four heart chambers (mammals and birds). We addressed this issue by our heart RNA-Seq experiments combined with published data, using 13 vertebrates and one invertebrate (sea squirt, as an outgroup). Our evolutionary transcriptome analysis showed that number of ancient paralogous genes expressed in heart tends to increase with the increase of heart chamber number along the vertebrate phylogeny, in spite that most of them were duplicated at the time near to the origin of vertebrates or even more ancient. Moreover, those paralogs expressed in heart exert considerably different functions from heart-expressed singletons: the former are functionally enriched in cardiac muscle and muscle contraction-related categories, whereas the latter play more basic functions of energy generation like aerobic respiration. These findings together support the notion that recruiting anciently paralogous genes that are expressed in heart is associated with the increase of chamber number in vertebrate evolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app