Add like
Add dislike
Add to saved papers

Distinct roles of the extracellular surface residues of glucagon-like peptide-1 receptor in β-arrestin 1/2 signaling.

Glucagon-like peptide-1 receptor (GLP-1R) is a prime drug target for type 2 diabetes and obesity. The ligand initiated GLP-1R interaction with G protein has been well studied, but not with β-arrestin 1/2. Therefore, bioluminescence resonance energy transfer (BRET), mutagenesis and an operational model were used to evaluate the roles of 85 extracellular surface residues on GLP-1R in β-arrestin 1/2 recruitment triggered by three representative GLP-1R agonists (GLP-1, exendin-4 and oxyntomodulin). Residues selectively regulated β-arrestin 1/2 recruitment for diverse ligands, and β-arrestin isoforms were identified. Mutation of residues K130-S136, L142 and Y145 on the transmembrane helix 1 (TM1)-extracellular domain (ECD) linker decreased β-arrestin 1 recruitment but increased β-arrestin 2 recruitment. Other extracellular loop (ECL) mutations, including P137A, Q211A, D222A and M303A selectively affected β-arrestin 1 recruitment while D215A, L217A, Q221A, S223A, Y289A, S301A, F381A and I382A involved more in β-arrestin 2 recruitment for the ligands. Oxyntomodulin engaged more broadly with GLP-1R extracellular surface to drive β-arrestin 1/2 recruitment than GLP-1 and exendin-4; I147, W214 and L218 involved in β-arrestin 1 recruitment, while L141, D215, L218, D293 and F381 in β-arrestin 2 recruitment for oxyntomodulin particularly. Additionally, the non-conserved residues on β-arrestin 1/2 C-domains contributed to interaction with GLP-1R. Further proteomics profiling of GLP-1R stably expressed cell line upon ligands with or without β-arrestin 1/2 overexpression demonstrated both commonly and biasedly regulated proteins and pathways associated with cognate ligands and β-arrestins. Our study offers valuable information about ligand induced β-arrestin recruitment mediated by GLP-1R and consequent intracellular signaling events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app