Add like
Add dislike
Add to saved papers

Discovery of broadly-neutralizing antibodies against brown recluse spider and Gadim scorpion sphingomyelinases using consensus toxins as antigens.

Protein Science 2024 March
Broadly-neutralizing monoclonal antibodies are becoming increasingly important tools for treating infectious diseases and animal envenomings. However, designing and developing broadly-neutralizing antibodies can be cumbersome using traditional low-throughput iterative protein engineering methods. Here, we present a new high-throughput approach for the standardized discovery of broadly-neutralizing monoclonal antibodies relying on phage display technology and consensus antigens representing average sequences of related proteins. We showcase the utility of this approach by applying it to toxic sphingomyelinases from the venoms of species from very distant orders of the animal kingdom, the recluse spider and Gadim scorpion. First, we designed a consensus sphingomyelinase and performed three rounds of phage display selection, followed by DELFIA-based screening and ranking, and benchmarked this to a similar campaign involving cross-panning against recombinant versions of the native toxins. Second, we identified two scFvs that not only bind the consensus toxins, but which can also neutralize sphingomyelinase activity of native whole venom in vitro. Finally, we conclude that the phage display campaign involving the use of the consensus toxin was more successful in yielding cross-neutralizing scFvs than the phage display campaign involving cross-panning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app