Add like
Add dislike
Add to saved papers

A single sequence of intermittent hypoxia does not alter stretch reflex excitability in able-bodied individuals.

Experimental Physiology 2024 Februrary 15
Spasticity attributable to exaggerated stretch reflex pathways, particularly affecting the ankle plantar flexors, often impairs overground walking in persons with incomplete spinal cord injury. Compelling evidence from rodent models underscores how exposure to acute intermittent hypoxia (AIH) can provide a unique medium to induce spinal plasticity in key inhibitory pathways mediating stretch reflex excitability and potentially affect spasticity. In this study, we quantify the effects of a single exposure to AIH on the stretch reflex in able-bodied individuals. We hypothesized that a single sequence of AIH will increase the stretch reflex excitability of the soleus muscle during ramp-and-hold angular perturbations applied to the ankle joint while participants perform passive and volitionally matched contractions. Our results revealed that a single AIH exposure did not significantly change the stretch reflex excitability during both passive and active matching conditions. Furthermore, we found that able-bodied individuals increased their stretch reflex response from passive to active matching conditions after both sham and AIH exposures. Together, these findings suggest that a single AIH exposure might not engage inhibitory pathways sufficiently to alter stretch reflex responses in able-bodied persons. However, the generalizability of our present findings requires further examination during repetitive exposures to AIH along with potential reflex modulation during functional movements, such as overground walking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app