Add like
Add dislike
Add to saved papers

Sulfonate Derivatives Containing a Kakuol Moiety as Potential Fungicidal Candidates: Design, Synthesis and Antifungal Activity Evaluation.

As a part of our continuing exploration to discover new potential promising fungicide candidates, eighteen sulfonate derivatives (3a-3r) containing a kakuol moiety were designed and synthesized. Synthetic sulfonate derivatives were tested comprehensively for antifungal activities against four plant pathogenic fungi (Botrytis (B.) cinerea, Valsa (V.) mali, Fusarium (F.) graminearum, Sclerotinia (S.) sclerotiorum), and their structure activity relationships were summarized. Especially, derivatives 3i and 3j exhibited remarkable activity against V. mali, with the inhibition rates of 99.8 and 100%, which were slightly superior to that of carbendazim (98.9%), a reference fungicide. Moreover, derivatives 3a, 3k and 3q possess the broader antifungal spectrum against three tested plant pathogenic fungi with inhibition rates over 60%. Structure-activity relationship (SAR) analysis indicated that the introduction of 2-F or 3-F into the benzene ring would give rise to a remarkable increase of the antifungal activity against V. mali.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app