Add like
Add dislike
Add to saved papers

Excessive fluoride induces ovarian function impairment by regulating levels of ferroptosis in fluorosis women and ovarian granulosa cells.

Reproductive Toxicology 2024 Februrary 10
The aim of this study was to investigate the role of ferroptosis in fluorosis women and the in vitro molecular mechanisms leading to ovarian dysfunction and abnormal hormone secretion by sodium fluoride (NaF) treatment of KGN cells. Fifty women with fluorosis as Fluorosis group and fifty healthy women as Control group were included in this study. The levels of lipid peroxidation and activities of antioxidant enzyme were assessed by photometric methods. The content of iron and glutathione (GSH) in serum was measured by microplate method. KGN cells were treated by different concentration of NaF (0, 1, 2, 4 and 8×10-3 M) for 24h. The mRNA and protein expression levels of ferroptosis-related molecules, including glutathione peroxidase 4 (GPX4), solute carrier family 7 member (SLC7A11), nuclear factor erythroid 2-related factor 2 (Nrf2), ferritin heavy chain 1 (FTH1) and p53, were assessed by qRT-PCR and western blot analysis. Fluorosis group women had a significant higher levels of iron, Malondialdehyde (MDA), FSH and LH, and a lower levels of E2 and antioxidant enzyme in serum than that in the control group. The representative molecular changes of ferroptosis, such as the decrease in GPX4, Nrf2 and SLC7A11 expression (mRNA and protein expression), the increase in protein expression of p53, and a reduced level of E2 were observed in KGN cells treated by excessive NaF. It is concluded therefore that NaF increases the expression of p53 and inhibits ovarian granulosa cell ferroptosis preventive protein expression, resulting in abnormal hormone secretion and the ovarian dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app