Add like
Add dislike
Add to saved papers

Canagliflozin protects against hyperglycemia-induced cerebrovascular injury by preventing blood-brain barrier (BBB) disruption via AMPK/Sp1/adenosine A2A receptor.

Diabetes mellitus causes brain microvascular endothelial cell (MEC) damage, inducing dysfunctional angiogenic response and disruption of the blood-brain barrier (BBB). Canagliflozin is a revolutionary hypoglycemic drug that exerts neurologic and/or vascular-protective effects beyond glycemic control; however, its underlying mechanism remains unclear. In the present study, we hypothesize that canagliflozin ameliorates BBB permeability by preventing diabetes-induced brain MEC damage. Mice with high-fat diet/streptozotocin-induced diabetes received canagliflozin for 8 weeks. We assessed vascular integrity by measuring cerebrovascular neovascularization indices. The expression of specificity protein 1 (Sp1), as well as tight junction proteins (TJs), phosphorylated AMP-activated protein kinase (p-AMPK), and adenosine A2A receptors was examined. Mouse brain MECs were grown in high glucose (30 mM) to mimic diabetic conditions. They were treated with/without canagliflozin and assessed for migration and angiogenic ability. We also performed validation studies using AMPK activator (AICAR), inhibitor (Compound C), Sp1 small interfering RNA (siRNA), and adenosine A2A receptor siRNA. We observed that cerebral pathological neovascularization indices were significantly normalized in mice treated with canagliflozin. Increased Sp1 and adenosine A2A receptor expression and decreased p-AMPK and TJ expression were observed under diabetic conditions. Canagliflozin or AICAR treatment alleviated these changes. However, this alleviation effect of canagliflozin was diminished again after Compound C treatment. Either Sp1 siRNA or adenosine A2A receptor siRNA could increase the expression of TJs. Luciferase reporter assay confirmed that Sp1 could bind to the adenosine A2A receptor gene promoter. Our study identifies the AMPK/Sp1/adenosine A2A receptor pathway as a treatment target for diabetes-induced cerebrovascular injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app