Add like
Add dislike
Add to saved papers

Fabrication of chitin based hydrophilic hyper-crosslinked porous polymer for efficiently removing bisphenol A from water.

Water pollution caused by bisphenol A (BPA) has become the world problem. Designing and preparing cost-effective and biodegradable sorbents for the effectively adsorptive removal of bisphenol A from wastewater is of immense significance. Herein, a natural polysaccharide (chitin) was used as raw materials to be grafted with styrene (GS), then crosslinked with α,α'-dichloro-p-xylene (DCX) to form the hyper-crosslinked polymer (labeled as CGS@DCX). The CGS@DCX showed high adsorptive affinity for bisphenol A, with adsorption capacity of 441 mg g-1 . Various studies gave an insight into the adsorption process, demonstrating that the highly efficient adsorption of BPA by the CGS@DCX is mainly based on the π-π stacking, hydrogen-bond interaction, polar interaction and pore adsorption. Moreover, the CGS@DCX had high chemical stability, good reusability (9 cycles) and fast adsorption kinetics (10 min) for adsorption of BPA. This work provides a promising strategy for the design and synthesis of novel yet eco-friendly sorbents to solve environmental problems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app