Journal Article
Review
Add like
Add dislike
Add to saved papers

The Dance of Proteostasis and Metabolism: Unveiling the Caloristatic Controlling Switch.

Cell Stress & Chaperones 2024 Februrary 7
The heat shock response (HSR) is an ancient and evolutionarily conserved mechanism designed to restore cellular homeostasis following proteotoxic challenges. However, it has become increasingly evident that disruptions in energy metabolism also trigger the HSR. This interplay between proteostasis and energy regulation is rooted in the fundamental need for ATP to fuel protein synthesis and repair, making the HSR an essential component of cellular energy management. Recent findings suggest that the origins of proteostasis-defending systems can be traced back over 3.6 billion years, aligning with the emergence of sugar kinases that optimized glycolysis around 3.594 billion years ago. This evolutionary connection is underscored by the spatial similarities between the nucleotide-binding domain of HSP70, the key player in protein chaperone machinery, and hexokinases. The HSR serves as a hub that integrates energy metabolism and resolution of inflammation, further highlighting its role in maintaining cellular homeostasis. Notably, 5'-AMP-activated protein kinase (AMPK) emerges as a central regulator, promoting the HSR during predominantly proteotoxic stress while suppressing it in response to predominantly metabolic stress. The complex relationship between AMPK and the HSR is finely tuned, with paradoxical effects observed under different stress conditions. This delicate equilibrium, known as caloristasis, ensures that cellular homeostasis is maintained despite shifting environmental and intracellular conditions. Understanding the caloristatic controlling switch at the heart of this interplay is crucial. It offers insights into a wide range of conditions, including glycemic control, obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases, reproductive abnormalities, and the optimization of exercise routines. These findings highlight the profound interconnectedness of proteostasis and energy metabolism in cellular function and adaptation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app