Add like
Add dislike
Add to saved papers

Non-destructive detection of egg white and yolk morphology transformation and salt content of salted duck eggs in salting by hyperspectral imaging.

Salt content is a crucial indicator of the maturity and internal quality of salted duck eggs (SDEs) during the pickling process. However, there is currently no valid and rapid method available for accurately detecting salt content. In the present study, we utilized hyperspectral imaging to no-destructively determine the salt content in egg yolks, egg whites, and whole eggs during the curing period. Firstly, principal component analysis was applied to explain the characteristics of egg yolk and white morphology transformation of SDEs with different maturities during curing. Secondly, sensitive spectral factors representative of changes in the salt content of SDEs were extracted by three spectral transformations (Savitzky-Golay SG, continuum removal CR, and first-order derivation FD) and three approaches of selecting characteristic wavelengths (successive projection algorithm SPA, uninformative variables elimination UVE and competitive adaptive reweighting sampling algorithm CARS). The results of the PLSR model suggested that the optimal models for predicting salt content in egg yolks, whites, and whole eggs were SG-UVE-PLSR (predicted coefficient of determination Rp 2 =0.912, predicted standard deviation SEp =0.151, residual prediction deviation RPD = 3.371), CR-CARS-PLSR (Rp 2 =0.873, SEp =0.862, RPD = 2.806), and CR-UVE-PLSR (Rp 2 =0.877, SEp =0.680, RPD = 2.851), respectively. Eventually, the optimal prediction model for the salt content of the whole egg was employed to a pixel spectral matrix to calculate the salt content values of pixel points on the hyperspectral image of SDEs. Additionally, pseudo-color techniques were employed to visualize the spatial distribution of predicted salt content. This work will provide a theoretical foundation for rapidly detecting maturity and enabling high-throughput quality sorting of SDEs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app