Add like
Add dislike
Add to saved papers

Ganoderic acid A suppresses autophagy by regulating the circFLNA/miR-486-3p/CYP1A1/XRCC1 axis to strengthen the sensitivity of lung cancer cells to cisplatin.

OBJECTIVES: Reportedly, ganoderic acid A (GA-A) increases the sensitivity of hepatocellular carcinoma cells to cisplatin (DDP) chemotherapy. Therefore, this study aims to fathom the influence of GA-A on lung cancer cells.

METHODS: After the construction of A549/DDP cells through exposure to DDP, the effects of GA-A on A549 and A549/DDP cells were revealed by cellular functional assays, western blot and quantitative reverse transcription PCR (qRT-PCR). The DDP-resistant lung cancer tumor was established in vivo, followed by further validation of the mechanism of GA-A.

RESULTS: GA-A suppressed the viability, migration, and invasion while downregulating Beclin and autophagy marker LC3II/LC3I levels and upregulating P62 levels in A549 and A549/DDP cells. These effects were reversed by circFLNA overexpression. Also, GA-A reinforced the sensitivity of A549/DDP cells to DDP, elevated the apoptosis and regulated the circFLNA/miR-486-3p/cytochrome P450 family 1 subfamily A member 1 (CYP1A1)/X-ray repair cross-complementing 1 (XRCC1) axis. The reversal effects of circFLNA overexpression on GA-A-induced viability and apoptosis of A549/DDP cells could all be counteracted in the presence of 3MA. GA-A inhibited lung cancer tumor growth and blocked autophagy.

CONCLUSION: GA-A suppresses autophagy by regulating the circFLNA/miR-486-3p/CYP1A1/XRCC1 axis to strengthen the sensitivity of lung cancer cells to DDP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app