Add like
Add dislike
Add to saved papers

Characteristics of Acute Cartilage Response After Mechanical Loading in Patients with Early-Mild Knee Osteoarthritis.

This study determined whether the acute cartilage response, assessed by cartilage thickness and echo intensity, differs between patients with early-mild knee osteoarthritis (OA) and healthy controls. We recruited 56 women aged ≥ 50 years with Kellgren-Lawrence (KL) grade ≤ 2 (age, 70.6 ± 7.4 years; height, 153.7 ± 5.2 cm; weight, 51.9 ± 8.2 kg). Based on KL grades and knee symptoms, the participants were classified into control (KL ≤ 1, asymptomatic, n = 27) and early-mild knee OA groups (KL 1 and symptomatic, KL 2, n = 29). Medial femoral cartilage thickness and echo intensity were assessed using ultrasonographic B-mode images before and after treadmill walking (15 min, 3.3 km/h). To investigate the acute cartilage response, repeated-measures analysis of covariance (groups × time) with adjusted age, external knee moment impulse, steps during treadmill walking, and cartilage thickness at pre-walking was performed. A significant interaction was found at the tibiofemoral joint; after walking, the cartilage thickness was significantly decreased in the early-mild knee OA group compared to the control group (p = 0.002). At the patellofemoral joint, a significant main effect of time was observed, but no interaction was detected (p = 0.802). No changes in cartilage echo intensity at either the tibiofemoral or patellofemoral joints, and no interactions were noted (p = 0.295 and p = 0.063). As acute cartilage response after walking, the thickness of the medial tibiofemoral joint in the early-mild knee OA was significantly reduced than that in the control group. Thus, greater acute deformation after walking might be a feature found in patients with early-mild knee OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app