Add like
Add dislike
Add to saved papers

Targeted Drug Designing for Treating Masticatory Myofascial Pain Dysfunction Syndrome: An In Silico Simulation Study.

Curēus 2024 January
Background Masticatory Myofascial Pain Dysfunction Syndrome (MMPDS) is a musculoligamentous disorder that shares similarities with temporomandibular joint pain and odontogenic pain. It manifests as dull or aching pain in masticatory muscles, influenced by jaw movement. Computer-aided drug design (CADD) encompasses various theoretical and computational approaches used in modern drug discovery. Molecular docking is a prominent method in CADD that facilitates the understanding of drug-bimolecular interactions for rational drug design, mechanistic studies & the formation of stable complexes with increased specificity and potential efficacy. The docking technique provides valuable insights into binding energy, free energy, and complex stability predictions. Aim The aim of this study was to use the docking technique for myosin inhibitors. Materials and methods Four inhibitors of myosin were chosen from the literature. These compound structures were retrieved from the Zinc15 database. Myosin protein was chosen as the target and was optimized using the RCSB Protein Data Bank. After pharmacophore modeling, 20 novel compounds were found and the SwissDock was used to dock them with the target protein. We compared the binding energies of the newly discovered compounds to those of the previously published molecules with the target. Results The results indicated that among the 20 molecules ZINC035924607 and ZINC5110352 exhibited the highest binding energy and displayed superior properties compared to the other molecules. Conclusion The study concluded that ZINC035924607 and ZINC5110352 exhibited greater binding affinity than the reported inhibitors of myosin. Therefore, these two molecules can be used as a potential and promising lead for the treatment of MMPDS and could be employed in targeted drug therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app