Add like
Add dislike
Add to saved papers

Flow cytometric assessments of metabolic activity in bacterial assemblages provide insight into ecosystem condition along the Buffalo National River, Arkansas.

The Buffalo National River (BNR) on karst terrain in Arkansas is considered an extraordinary water resource. Water collected in Spring 2017 along BNR were metagenomically analyzed using 16S rDNA, and for 17 months (5/2017-11/2018), bacterial responses were measured in relation to nutrients sampled along a stretch of BNR near a concentrated animal feed operation (CAFO) on Big Creek. Because cell count and esterase activity can increase proportionally with organic enrichment, they were hypothesized to be elevated near the CAFO. Counts (colony forming units; CFUs) were different among sites for 73 % of the months; Big Creek generated highest CFUs 27 % of the time, with the close downstream site at 13.3 %. Esterase activity was different among sites 94 % of the time, with Big Creek exhibiting lowest activity 71 % of the time. Over the months, activity was similar across sites at ~70 % active, except at Big Creek (56 %). The α-diversity of BNR microbial consortia near a wastewater treatment plant (WWTP) and the CAFO was related to distance from the WWTP and CAFO. The inverse relationship between high CFUs and low esterase activity at Big Creek (r = -0.71) actuated in vitro exposures of bacteria to organic wastewater contaminants (OWC) previously identified in the watershed. Exponential-phase Escherichia coli (stock strain), Streptococcus suis (avirulent, from swine), and S. dysgalactiae (virulent, from silver carp, Hypophthalmichthys molitrix) were incubated with atrazine, pharmaceuticals (17 α-ethynylestradiol and trenbolone), and antimicrobials (tylosin and butylparaben). Bacteria were differentially responsive. Activity varied with exposure time and OWC type but not concentration; atrazine decreased it most. Taken together - the metagenomic taxonomic similarities along BNR, slightly higher bacterial growth and lower bacterial esterase at the CAFO, and the lab exposures of bacterial strains showing that OWC altered metabolism - results indicated that bioactive OWC entering the watershed can strongly influence microbial processes in the aquatic ecosystem.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app