Add like
Add dislike
Add to saved papers

Serum metabolism characteristics of patients with myocardial injury after noncardiac surgery explored by the untargeted metabolomics approach.

BACKGROUND: Myocardial injury after noncardiac surgery (MINS) is one of the most common complications associated with postoperative adverse cardiovascular outcomes and mortality. However, MINS often fails to be timely diagnosed due to the absence of clinical symptoms and limited diagnostic methods. The metabolomic analysis might be an efficient way to discover new biomarkers of MINS. Characterizing the metabolomic features of MINS patients may provide new insight into the diagnosis of MINS.

METHODS: In this study, serum samples from 20 matched patients with or without MINS (n = 10 per group) were subjected to untargeted metabolomics analysis to investigate comprehensive metabolic information. Differential metabolites were identified, and the enriched metabolic pathway was determined based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

RESULTS: A comprehensive analysis revealed 124 distinct metabolites, predominantly encompassing lipids, amino acids and other compounds. The observed modifications in metabolic pathways in patients with or without MINS showed significant clustering in cholesterol metabolism, aldosterone synthesis and secretion, primary bile acid biosynthesis, as well as cysteine and methionine metabolism. Four specific metabolites (taurocholic acid, L-pyroglutamic acid, taurochenodeoxycholic acid, and pyridoxamine) exhibited promising potential as biomarkers for prognosticating MINS.

CONCLUSIONS: This study contributes valuable insights into the metabolomic features of MINS and the discovery of potential biomarkers which may help the early diagnosis of MINS. The identified metabolites and altered pathways offer valuable insights into the molecular underpinnings of MINS, paving the way for improved diagnostic approaches and potential intervention strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app