Add like
Add dislike
Add to saved papers

Effect of montmorillonite modified straw biochar on transfer behavior of lead and copper in the historical mining areas of dry-hot valleys.

Chemosphere 2024 Februrary 2
Due to the rapid development of human beings, heavy metals are occurred in the Yunnan-Guizhou Plateau and Panxi Plateau, the special dry and hot climate areas. Pb and Cu can be quickly transferred through water-plant-animal, further harm to human health by food chain. Therefore, the study of heavy metal treatment is imminent. In this study, Biochar-montmorillonite composites were prepared by co-pyrolysis and characterized, and their ability to remove lead and copper from water-soil process were tracked. And their effectiveness in remediating soil contaminated by lead and copper was documented. The composite material has the rich pore structure, large specific surface area (81.5 m2 /g) and a variety of surface functional groups such as C-C, CO, ester-metal and metal-oxygen bonds. Pb and Cu can be effectively adsorbed and fixed to the level of no harm to human health. The adsorption reaction of lead and copper on the Biochar-montmorillonite composites is more suitable to be described by Langmuir adsorption and pseudo-second-order kinetics models. The saturation adsorption capacity of the composite for Pb was measured as 212.5 mg/g. For Cu, it was 136.5 mg/g. The data were fitted by a two-compartment first-order kinetic model. ffast for Pb and Cu is estimated to be 0.81 and 0.78, respective. Fast adsorption is dominant and belongs to typical chemical adsorption, which is consistent with the second-order kinetic results. With 5 % of the composite, approximately 80 % of exchangeable heavy metals in those soils collected from the Yunnan-Guizhou Plateau and Panxi Plateau were reduced. The biochar-montmorillonite composites made Pb and Cu change to stable residual state, up to 35 %. Besides, it effectively restored the activity of urease and sucrase in soils. Results indicated that biochar-montmorillonite composites can be effectively used as an environment-friendly adsorbent or passivator to purify heavy metals in soils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app