Add like
Add dislike
Add to saved papers

Regulating Lipid Metabolism via Mitochondrial Dynamics in Tongue Squamous Cell Carcinoma Cancer Stem Cells.

BACKGROUND: Cancer stem cells (CSCs) are a sub-population of cancer cells present in many kinds of malignant tumors that have the potential for self-proliferation and differentiation. These cells have been demonstrated as the main cause of tumor recurrence and metastasis. Strong evidence indicates that CSCs prefer reprogrammed fatty acid β-oxidation over oxidative phosphorylation for sustaining energy supply. Although mitochondrial dynamics participate in the regulation of cancer stemness, the correlation between the inhibition of mitochondrial fission and the regulation of lipid metabolism in CSCs remains poorly understood.

METHODS: The human tongue squamous cell carcinoma (TSCC) cell lines CAL27 and SAS were used to obtain the CSCs by 3D Spheroid Culture. Then,western blot methods, RT-PCR and flow cytometry analysis were used to identify the TSCC CSCs. Next, Immunofluorescence method, transmission electron microscopy detection and western blot methods were used to evaluate the mitochondrial morphology and the quantity of lipid droplets (LDs). Lastly, lipidomic analysis was applied to explored the lipidomic alterations of TSCC CSCs with different mitochondrial morphology.

RESULTS: Here, we show that the quantity of lipid droplets containing intracellular triglyceride (TG) can be decreased by regulating mitochondrial morphology. Lipidomic analysis using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) also compared alterations in lipid metabolites in tongue squamous cell carcinoma (TSCC) CSCs, TSCC cells (non-CSCs), and CSCs with different mitochondrial morphology. Discriminant lipids of statistical significance were successfully annotated, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), sphingomyelins (SMs), triacylglycerols (TGs), phosphatidylglycerols (PGs), phosphatidylserines (PSs), lysophosphatidylcholines (LPCs), and lysophosphatidylethanolamines (LPEs).

CONCLUSION: This study provides a deeper insight into the alterations of lipid metabolism associated with TSCC CSCs, non-CSCs and CSCs regulated by mitochondrial dynamics and thus serves as a guide toward novel targeted therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app