Add like
Add dislike
Add to saved papers

Knockout of adenylosuccinate synthase purA increases susceptibility to colistin in Escherichia coli.

FEMS Microbiology Letters 2024 Februrary 2
Colistin is a cationic cyclic antimicrobial peptide used as a last resort against multidrug-resistant gram-negative bacteria. To understand the factors involved in colistin susceptibility, we screened colistin-sensitive mutants from an E. coli gene-knockout library (Keio collection). The knockout of purA, whose product catalyzes the synthesis of adenylosuccinate from IMP in the de novo purine synthesis pathway, resulted in increased sensitivity to colistin. Adenylosuccinate is subsequently converted to AMP, which is phosphorylated to produce ADP, a substrate for ATP synthesis. The amount of ATP was lower in the purA-knockout mutant than that in the wild-type strain. ATP synthesis is coupled with proton transfer, and it contributes to the membrane potential. Using the membrane potential probe, 3,3'-diethyloxacarbocyanine iodide [DiOC2(3)], we found that the membrane was hyperpolarized in the purA-knockout mutant compared to that in the wild-type strain. Treatment with the proton uncoupler, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), abolished the hyperpolarization and colistin sensitivity in the mutant. The purA-knockout mutant exhibited increased sensitivity to aminoglycosides, kanamycin, and gentamicin; their uptake requires a membrane potential. Therefore, the knockout of purA, an adenylosuccinate synthase, decreases ATP synthesis concurrently with membrane hyperpolarization, resulting in increased sensitivity to colistin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app