Add like
Add dislike
Add to saved papers

A new Frontier in electric load forecasting: The LSV/MOPA model optimized by modified orca predation algorithm.

Heliyon 2024 January 31
Electric load forecasting is a vital task for energy management and policy-making. However, it is also a challenging problem due to the complex and dynamic nature of electric load data. In this paper, a novel technique, called LSV/MOPA, has been proposed for electric load forecasting. The technique is a hybrid model that combines the advantages of Long Short-Term Memory (LSTM) and Support Vector Regression (SVR), two powerful artificial intelligence algorithms. The hybrid model is further optimized by a newly Modified Orca Predation Algorithm (MOPA), which enhances the forecasting accuracy and efficiency. The LSV/MOPA model has been applied to historical electric load data from South Korea, covering four regions and 20 years. The LSV/MOPA model has been compared with other state-of-the-art forecasting techniques, including SVR/FFA, LSTM/BO, LSTM-SVR, and CNN-LSTM. The results show that the LSV/MOPA model with minimum average mean absolute percentage deviation error, including 365 in northern region, 12.8 in southern region, 8.6 in central region, and 30.8 in eastern region, provides the best fitting and outperforms the other techniques in terms of the Mean Absolute Percentage Deviation (MAPD) index, achieving lower values for all regions and years. The LSV/MOPA model also exhibits faster convergence and better generalization than the other techniques. This study demonstrates the effectiveness and superiority of the LSV/MOPA model for electric load forecasting and suggests its potential applications in other sectors where accurate forecasting is crucial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app