Add like
Add dislike
Add to saved papers

Anti-enzymatic and DNA docking studies of montelukast: A multifaceted molecular scaffold with in vitro investigations, molecular expression analysis and molecular dynamics simulations.

Heliyon 2024 January 31
Montelukast, an approved leukotriene receptor 1 (Cys-LT 1) antagonist with anti-inflammatory properties is used for the treatment of asthma and allergic rhinitis. In the present studies, montelukast was subjected to in vitro inhibitory assays followed by kinetic and in silico investigations. Montelukast demonstrated inhibitory activity against yeast α-glucosidase (IC50 44.31 ± 1.21 μM), jack bean urease (JB urease, IC50 8.72 ± 0.23 μM), human placental alkaline phosphatase (hPAP, IC50 17.53 ± 0.19 μM), bovine intestinal alkaline phosphatase (bIAP, IC50 15.18 ± 0.23 μM) and soybean 15-lipoxygenase (15-LOX, IC50 2.41 ± 0.13 μM). Kinetic studies against α-glucosidase and urease enzymes revealed its competitive mode of inhibition. Molecular expression analysis of montelukast in breast cancer cell line MCF-7 down-regulated AP by a factor of 0.27 (5 μM) compared with the 0.26 value for standard inhibitor levamisole (10 μM). Molecular docking estimated a binding affinity ranging -8.82 to -15.65 kcal/mol for the enzymes. Docking against the DNA dodecamer (ID: 1BNA) observed -9.13 kcal/mol via minor groove binding. MD simulations suggested stable binding between montelukast and the target proteins predicting strong inhibitory potential of the ligand. Montelukast features a chloroquinoline, phenyl ring, a cyclopropane group, a carboxylic group and a sulfur atom all of which collectively enhance its inhibitory potential against the said enzymes. These in vitro and computational investigations demonstrate that it is possible and suggested that the interactions of montelukast with more than one targets presented herein may be linked with the side effects presented by this drug and necessitate additional work. The results altogether suggest montelukast as an important structural scaffold possessing multitargeted features and warrant further investigations in repurposing beyond its traditional pharmacological use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app