Add like
Add dislike
Add to saved papers

Association of short-term PM 2.5 exposure with airway innate immune response, microbiota and metabolism alterations in human airways.

Environmental Pollution 2024 January 30
Exposure to fine particulate matter (PM2.5 ) has been associated with impaired airway innate immunity, leading to diverse lung disorders. However, the mechanisms of the adverse effects of PM2.5 on the airway innate immune system has not been adequately elucidated. This study aimed to investigate the association between short-term exposure to ambient PM2.5 and airway innate immune responses. A panel study of 53 undergraduate students was conducted in November 2020 and April 2021. Levels of airway innate immune biomarkers including interleukin-1β (IL-1β), IL-4, IL-6, IL-8, IL-17, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), myeloperoxidase (MPO), and matrix metalloproteinase-9 (MMP-9) in induced sputum were measured, and airway microbiota and metabolites examined. Linear mixed-effect model was used to evaluate the effects of short-term exposure to PM2.5 on the above-listed airway immune biomarkers. The results indicated that for every 10 μg/m3 increase in PM2.5 concentration (at lag3), was associated with an increase of 21.3 % (5.4 %-37.1 %), 26.2 % (0.30 %-52.1 %), 22.4 % (0.70 %-44.2 %), 27.4 % (6.6 %-48.3 %), 18.3 % (4.6 %-31.9 %), 3.9 % (0.20 %-7.6 %) or 2.4 % (0.10 %-4.7 %) in IL-6, TNF-α, IL-17, IL-4, IFN-γ, MPO, or MMP-9 levels, respectively. Meanwhile, exposure to higher levels of ambient PM2.5 was found to significantly modulate airway microbiota and metabolite profile. Specifically, Prevotella and Fusobacterium, as well as 96 different metabolites were associated with PM2.5 levels. The metabolic pathways associated with these metabolites mainly included amino acid biosynthesis and metabolism. Notably, PM2.5 exposure-induced alterations of some airway microbiota were significantly correlated with specific airway metabolic change. Taken together, these results demonstrated that short-term exposure to PM2.5 was associated with alterations of airway immune response, microbial dysbiosis and changes of metabolites. This study provided insights into the mechanisms underlying PM2.5 -induced airway innate immune responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app