Add like
Add dislike
Add to saved papers

Peroxiredoxin-1 as a molecular chaperone that regulates glutathione S-transferase P1 activity and drives mutidrug resistance in ovarian cancer cells.

Ovarian cancer is among the most prevalent gynecological malignancies around the globe. Nonetheless, chemoresistance continues to be one of the greatest obstacles in the treatment of ovarian cancer. Therefore, understanding the mechanisms of chemoresistance and identifying new treatment options for ovarian cancer patients is urgently required. In this study, we found that the mRNA and protein expression levels of PRDX1 were significantly increased in cisplatin resistant A2780/CDDP cells. Cell survival assays revealed that PRDX1 depletion substantially increased ovarian cancer cell sensitivity to cisplatin, docetaxel, and doxorubicin. Additionally, PRDX1 significantly increased GSTP1 activity, resulting in multidrug resistance. Biochemical experiments showed that PRDX1 interacted with GSTP1 through Cysteine 83, which regulated GSTP1 activity as well as chemotherapy resistance in ovarian cancer cells. Our findings indicate that the molecular chaperone activity of PRDX1 is a promising new therapeutic target for ovarian cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app