Add like
Add dislike
Add to saved papers

Biomechanical properties measured with dynamic Scheimpflug analyzer in central serous chorioretinopathy.

PURPOSE: Recent evidence suggests that venous congestion at the vortex vein significantly contributes to the development of central serous chorioretinopathy (CSCR), and sclera is observed to be thicker in affected eyes. This study aims to investigate whether eyes with CSCR exhibit stiff corneas, measured using Corneal Visualization Scheimflug Technology (Corvis ST), which may serve as an indicator of scleral stiffness.

METHODS: This retrospective case-control study comprises 52 eyes from 33 patients diagnosed with CSCR and 52 eyes from 32 normal controls without CSCR. We compared biomechanical parameters measured with Corvis ST and anterior scleral thickness measured using anterior segment swept-source optical coherence tomography between the two groups.

RESULTS: Age, sex, axial length, intraocular pressure, and central corneal thickness showed no significant differences between the two groups (p > 0.05, linear mixed model). Three biomechanical parameters-peak distance, maximum deflection amplitude, and integrated inverse radius-indicated less deformability in CSCR eyes compared to control eyes. The stress-strain index (SSI), a measure of stiffness, and anterior scleral thickness (AST) at temporal and nasal points were significantly higher in the CSCR eyes. SSI and AST were not correlated, yet both were significantly and independently associated with CSCR in a multivariate logistic regression model.

CONCLUSIONS: Eyes affected by CSCR have stiffer corneas, irrespective of thicker scleral thickness. This suggests that stiffer sclera may play a role in the pathogenesis of CSCR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app