Add like
Add dislike
Add to saved papers

In Vivo Near-Infrared Fluorescence Resonance Energy Transfer (NIR-FRET) Imaging of MMP-2 in ALI/ARDS in LPS-Treated Mice.

ACS Omega 2024 January 24
Matrix metalloproteinases (MMPs) are zinc-dependent proteinases that are capable of cleavage of extracellular matrix (ECM) proteins and enzymes and play an important role in lung dysfunction. Specifically, MMP-2 is produced in the lung by alveolar epithelial and endothelial cells and other immune cells, such as macrophages. MMP-2 regulatory pathway is initiated in alveolar macrophages during acute lung injury (ALI), which may increase pulmonary inflammation. Therefore, there is a critical need for fast and reliable techniques to track the acute respiratory distress syndrome (ARDS). Here, we describe near-infrared fluorescence resonance energy transfer (NI-FRET) MMP-2-based probe for the in vivo detection of ALI induced by lipopolysaccharides (LPS). LPS-induced MMP-2 was measured using near-infrared (NIR) imaging after 1, 2, 4, 5, and 24 h of LPS exposure. Our results were compared with the data obtained from ELISA and Western blotting, demonstrating that MMP-2 fluorescence probe provide a promising in vivo diagnostic tool for ALI/ARDS in infected mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app