Add like
Add dislike
Add to saved papers

Transfer learning of pre-treatment quantitative ultrasound multi-parametric images for the prediction of breast cancer response to neoadjuvant chemotherapy.

Scientific Reports 2024 January 30
Locally advanced breast cancer (LABC) is a severe type of cancer with a poor prognosis, despite advancements in therapy. As the disease is often inoperable, current guidelines suggest upfront aggressive neoadjuvant chemotherapy (NAC). Complete pathological response to chemotherapy is linked to improved survival, but conventional clinical assessments like physical exams, mammography, and imaging are limited in detecting early response. Early detection of tissue response can improve complete pathological response and patient survival while reducing exposure to ineffective and potentially harmful treatments. A rapid, cost-effective modality without the need for exogenous contrast agents would be valuable for evaluating neoadjuvant therapy response. Conventional ultrasound provides information about tissue echogenicity, but image comparisons are difficult due to instrument-dependent settings and imaging parameters. Quantitative ultrasound (QUS) overcomes this by using normalized power spectra to calculate quantitative metrics. This study used a novel transfer learning-based approach to predict LABC response to neoadjuvant chemotherapy using QUS imaging at pre-treatment. Using data from 174 patients, QUS parametric images of breast tumors with margins were generated. The ground truth response to therapy for each patient was based on standard clinical and pathological criteria. The Residual Network (ResNet) deep learning architecture was used to extract features from the parametric QUS maps. This was followed by SelectKBest and Synthetic Minority Oversampling (SMOTE) techniques for feature selection and data balancing, respectively. The Support Vector Machine (SVM) algorithm was employed to classify patients into two distinct categories: nonresponders (NR) and responders (RR). Evaluation results on an unseen test set demonstrate that the transfer learning-based approach using spectral slope parametric maps had the best performance in the identification of nonresponders with precision, recall, F1-score, and balanced accuracy of 100, 71, 83, and 86%, respectively. The transfer learning-based approach has many advantages over conventional deep learning methods since it reduces the need for large image datasets for training and shortens the training time. The results of this study demonstrate the potential of transfer learning in predicting LABC response to neoadjuvant chemotherapy before the start of treatment using quantitative ultrasound imaging. Prediction of NAC response before treatment can aid clinicians in customizing ineffectual treatment regimens for individual patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app