Add like
Add dislike
Add to saved papers

Lactic acid fermentation of kamaboko, a heated Alaska pollock surimi, enhances angiotensin I-converting enzyme inhibitory activity via fish protein hydrolysis.

To enhance the value of surimi, efforts have been made to develop a fermentation method with lactic acid bacteria (LAB) to proteolyze fish protein. However, fermenting unheated surimi poses a spoilage risk due to its high bacterial content. Surimi heat treatment can prevent spoilage, but gel formation induced by heating introduces another technical issue: it hinders uniform fermentation. Thus, this study aims to observe the proteolysis and enhance the functionality of seafood product through lactic acid fermentation of kamaboko, a heated surimi. Upon analyzing the kamaboko fermented with Lactobacillus helveticus JCM1004, we observed that LAB produced protease, resulting in the degradation of myosin heavy chain and actin during fermentation. Lactic acid fermentation significantly augmented the peptide content of kamaboko, subsequently elevating the angiotensin Ⅰ-converting enzyme (ACE) inhibitory activity in 200-fold diluted extract of fermented kamaboko to approximately 70% and higher. Notably, our investigation revealed that proteolysis was confined to the surface of kamaboko, as evidenced by SDS-PAGE analysis. This observation implies that the surface area of kamaboko influences the ACE inhibitory activity. Through a comparative analysis of various bacterial strains, we demonstrated that the increase in ACE inhibitory activity is contingent on the protease generated by LAB. These results suggest that LAB-mediated proteolysis of fish proteins liberates bioactive peptides, thereby manifesting in the ACE inhibitory activity. In summary, this study underscores that the fermentation of kamaboko employing proteolytic LAB holds promise in the development of novel functional seafood products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app