Add like
Add dislike
Add to saved papers

Plasma-Activated Media Produced by a Microwave-Excited Atmospheric Pressure Plasma Jet Is Effective against Cisplatin-Resistant Human Bladder Cancer Cells In Vitro.

Media exposed to atmospheric pressure plasma (APP) produce reactive oxygen and nitrogen species (RONS), with hydrogen peroxide (H2 O2 ), nitrite (NO2 - ), and nitrate (NO3 - ) being among the most detected species due to their relatively long lifetime. In this study, a standardized microwave-excited (ME) APP jet (APPJ) source was employed to produce gaseous RONS to treat liquid samples. The source was a commercially available plasma jet, which generated argon plasma utilizing a coaxial transmission line resonator at the operating frequency of 2.45 GHz. An ultraviolet-visible spectrophotometer was used to measure the concentrations of H2 O2 and NO3 - in plasma-activated media (PAM). Three different types of media (deionized water, Hank's balanced salt solution, and cell culture solution Dulbecco's modified eagles medium [DMEM]) were utilized as liquid samples. Among these media, the plasma-treated DMEM was observed to have the highest levels of H2 O2 and NO3 - . Subsequently, the feasibility of using argon ME-APPJ-activated DMEM (PAM) as an adjuvant to enhance the therapeutic effects of cisplatin on human bladder cancer cells (T-24) was investigated. Various cancer cell lines, including T-24 cells, treated with PAM were observed in vitro for changes in cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. A viability reduction was detected in the various cancer cells after incubation in PAM. Furthermore, the study's results revealed that PAM was effective against cisplatin-resistant T-24 cells in vitro. In addition, a possible connection between HER expression and cell viability was sketched.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app