Add like
Add dislike
Add to saved papers

Antibacterial activity and modes of action of a novel hepcidin isoform from the shrimp scad, Alepes djedaba (Forsskål, 1775).

Hepcidin, initially identified in human blood ultrafiltrate as cysteine rich Liver Expressed Antimicrobial Peptide (LEAP-1), is a core molecular conduit between iron trafficking and immune response. Though a great share of studies has been focused on the iron regulatory function of hepcidins, investigations on the antimicrobial aspects are relatively less. The present study is aimed at identification of hepcidin from a teleost fish, Alepes djedaba followed by its recombinant expression, testing antibacterial property, stability and evaluation of cytotoxicity. Modes of action on bacterial pathogens were also examined. A novel hepcidin isoform, Ad-Hep belonging to the HAMP1(Hepcidin antimicrobial peptide 1) group of hepcidins was identified from the shrimp scad, Alepes djedaba. The Ad-Hep with 2.9 kDa size was found to be a cysteine rich, cationic peptide (+4) with antiparallel beta sheet conformation, a furin cleavage site (RXXR) and 'ATCUN' motif. It was heterologously expressed in E. coli Rosettagami B(DE3)PLysS cells and the recombinant peptide, rAd-Hep was found to have significant antibacterial activity, especially against Edwardsiella tarda, Vibrio parahaemolyticus and Escherichia coli. Membrane depolarization followed by membrane permeabilization and Reactive Oxygen Species (ROS) production were found to be the modes of action of rAd-Hep on bacterial cells. Ad-Hep was found to be non-haemolytic to hRBC and non-cytotoxic in mammalian cell line. Stability of the peptide at varying temperature, pH and metal salts qualify them for applications in vivo. With significant bactericidal activity coupled with direct killing mechanisms, the rAd-Hep can be a promising drug candidate for therapeutic applications in medicine and fish culture systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app