Add like
Add dislike
Add to saved papers

Tripolar configuration and pulse shape in cochlear implants reduce channel interactions in the temporal domain.

Hearing Research 2024 January 20
The present study investigates effects of current focusing and pulse shape on threshold, dynamic range, spread of excitation and channel interaction in the time domain using cochlear implant stimulation. The study was performed on 20 adult guinea pigs using a 6-channel animal cochlear implant, recording was performed in the auditory midbrain using a multielectrode array. After determining the best frequencies for individual recording contacts with acoustic stimulation, the ear was deafened and a cochlear implant was inserted into the cochlea. The position of the implant was controlled by x-ray. Stimulation with biphasic, pseudomonophasic and monophasic stimuli was performed with monopolar, monopolar with common ground, bipolar and tripolar configuration in two sets of experiments, allowing comparison of the effects of the different stimulation strategies on threshold, dynamic range, spread of excitation and channel interaction. Channel interaction was studied in the temporal domain, where two electrodes were activated with pulse trains and phase locking to these pulse trains in the midbrain was quantified. The results documented multifactorial influences on the response properties, with significant interaction between factors. Thresholds increased with increasing current focusing, but decreased with pseudomonophasic and monophasic pulse shapes. The results documented that current focusing, particularly tripolar configuration, effectively reduces channel interaction, but that also pseudomonophasic and monophasic stimulation and phase duration intensity coding reduce channel interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app