Add like
Add dislike
Add to saved papers

Cross-Modal Tinnitus Remediation: A Tentative Theoretical Framework.

Brain Sciences 2024 January 20
Tinnitus is a prevalent hearing-loss deficit manifested as a phantom (internally generated by the brain) sound that is heard as a high-frequency tone in the majority of afflicted persons. Chronic tinnitus is debilitating, leading to distress, sleep deprivation, anxiety, and even suicidal thoughts. It has been theorized that, in the majority of afflicted persons, tinnitus can be attributed to the loss of high-frequency input from the cochlea to the auditory cortex, known as deafferentation. Deafferentation due to hearing loss develops with aging, which progressively causes tonotopic regions coding for the lost high-frequency coding to synchronize, leading to a phantom high-frequency sound sensation. Approaches to tinnitus remediation that demonstrated promise include inhibitory drugs, the use of tinnitus-specific frequency notching to increase lateral inhibition to the deafferented neurons, and multisensory approaches (auditory-motor and audiovisual) that work by coupling multisensory stimulation to the deafferented neural populations. The goal of this review is to put forward a theoretical framework of a multisensory approach to remedy tinnitus. Our theoretical framework posits that due to vision's modulatory (inhibitory, excitatory) influence on the auditory pathway, a prolonged engagement in audiovisual activity, especially during daily discourse, as opposed to auditory-only activity/discourse, can progressively reorganize deafferented neural populations, resulting in the reduced synchrony of the deafferented neurons and a reduction in tinnitus severity over time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app