Add like
Add dislike
Add to saved papers

Three-dimensional rotation of deformable cells at a bipolar electrode array using a rotating electric field.

Lab on a Chip 2024 January 27
Three-dimensional rotation of cells is imperative in a variety of applications such as biology, medicine, and chemistry. We report for the first time a versatile approach for executing controllable 3D rotation of cells or particles at a bipolar electrode (BPE) array using a rotating electric field. The versatility of this method is demonstrated by 3D rotating various cells including yeast cells and K562 cells and the cells can be rotated to a desired orientation and immobilized for further operations. Our results demonstrate how electrorotation torque, induced charge electroosmosis (ICEO) flow and dielectrophoresis can be exerted on certain cells for modulating the rotation axis, speed, and direction. ICEO-based out-of-plane rotation is capable of rotating various cells in a vertical plane regardless of their shape and size. It can realize cell orientation by rotating cells toward a specific angle and enable cell rotation by steadily rotating multiple cells at a controllable speed. The rotation spectrum for in-plane rotation is further used to extract the cellular dielectric properties. This work offers a flexible method for controllable, contactless and precise rotation of different cells or particles, offering a rapid, high-throughput, and nondestructive rotation method for cell analysis and drug discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app