Add like
Add dislike
Add to saved papers

Molecular surface-dependent light harvesting and photo charge separation in plant-derived carbon quantum dots for visible-light-driven OH radical generation for remediation of aromatic hydrocarbon pollutants and real wastewater.

Despite the growing emphasis on eco-friendly nanomaterials as energy harvesters, scientists are actively searching for metal-free photocatalysts to be used in environmental remediation strategies. Developing renewable resource-based carbon quantum dots (CQDs) as the sole photocatalyst to harvest visible light for efficient pollutant degradation is crucial yet challenging, particularly for addressing the escalating issue of water deterioration. Moreover, the photocatalytic decomposition of H2 O2 under visible light irradiation remains an arduous task. Based on this, we designed two types of CQDs, C-CQDs (carboxylic-rich) and A-CQDs (amine-rich) with distinct molecular surfaces. Owing to the higher amount of upward band bending induced by amine-rich molecular surface, A-CQDs efficiently harvest the visible light and prevent recombination kinetics resulting in prolonged lifetimes (25 ps), and augmented charge carrier density (35.7 × 1018 ) of photoexcited charge carriers. A-CQDs enabled rapid visible-light-driven photolysis of H2 O2 (k = 0.058 min-1 ) and produced higher quantity of • OH radicals (0.158 μmol/sec) for the mineralization of petroleum waste, BETX (i.e. Benzene, Ethylbenzene, Toluene and Xylene) (k = 0.017-0.026 min-1 ) and real textile wastewater (k = 0.026 min-1 ). To assess comparative toxicities of both remediated and non-remediated real wastewater samples in a time and dose depended manner, Drosophila melanogaster was used as a model organism. The findings unequivocally demonstrate the potential of remediated wastewater for watering urban forestry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app