Add like
Add dislike
Add to saved papers

Lymph Node-Targeted Vaccine Boosting of TCR T-cell Therapy Enhances Antitumor Function and Eradicates Solid Tumors.

T-cell receptor (TCR)-modified T-cell therapies have shown promise against solid tumors, but overall therapeutic benefits have been modest due in part to suboptimal T-cell persistence and activation in vivo, alongside potential tumor antigen escape. In this study, we demonstrate an approach to enhance the in vivo persistence and function of TCR T cells through combination with Amphiphile (AMP) vaccination including cognate TCR T peptides. AMP modification improves lymph node targeting of conjugated tumor immunogens and adjuvants, thereby coordinating a robust T cell-activating endogenous immune response. AMP vaccine combination with TCR T-cell therapy led to complete eradication and durable responses against established murine solid tumors refractory to TCR T-cell monotherapy. Enhanced antitumor efficacy was correlated with simultaneous in vivo invigoration of adoptively transferred TCR T cells and in situ expansion of the endogenous antitumor T-cell repertoire. Long-term protection against tumor recurrence in AMP-vaccinated mice was associated with antigen spreading to additional tumor-associated antigens not targeted by vaccination. AMP vaccination further correlated with pro-inflammatory lymph node transcriptional reprogramming and increased antigen presenting-cell maturation, resulting in TCR T-cell expansion and functional enhancement in lymph nodes and solid tumor parenchyma without lymphodepletion. In vitro evaluation of AMP peptides with matched human TCR T cells targeting NY-ESO-1, mutant KRAS, and HPV16 E7 illustrated the clinical potential of AMP vaccination to enhance human TCR T-cell proliferation, activation, and antitumor activity. Taken together, these studies provide rationale and evidence to support clinical evaluation of combining AMP vaccination with TCR T-cell therapies to augment antitumor activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app