Add like
Add dislike
Add to saved papers

Optimized Refolding Buffers Oriented Humoral Immune Responses Versus PfGCS1 Self-Assembled Peptide Nanoparticle.

Molecular Biotechnology 2024 January 25
Developing a novel class of vaccine is pivotal for eliminating and eradicating malaria. Preceding investigations demonstrated partial blocking activity in malaria transmission against recombinant vaccine PfHAP2-GCS1 and conserved region of the cd loop. The effectiveness of immune response varies with the size and shape of the self-assembly of peptide nanoparticles (SAPNs) displaying antigen, affected by different components in refolding buffers. Plasmodium falciparum Generative Cell Specific 1 (PfGCS1), a promising malaria transmission-blocking vaccine (TBV) candidate, was expressed, purified, and followed by a four-step refolding process to form nanoparticles (PfGCS1-SAPNs). The influence of buffer components on the size and shape of SAPNs was investigated by DLS and FESEM. Furthermore, the immunogenicity of nanostructures was assessed in different mouse groups. The results showed that PfGCS1-SAPN was immunogenic and its administration with Poly (I:C), stimulated humoral and cellular responses in the mouse model. In the immunized mice groups, the level of IgG antibodies against PfGCS1-SAPN was significantly increased in different time points (second and third boost) and heterogeneous boosters. The various IgG-subclasses profile shifted to Th1, Th2, or Th1/Th2 mix responses in mice immunized with PfGCS1-SAPN refolded in different buffers, indicating a prerequisite for further investigations to optimize vaccine formulation to enhance and modulate Th1/cellular responses. Such studies pave the way to improve biophysical features related to the nanoparticles' size, shape, and conformational epitopes of candidate antigens and T- and B-cells presented on the superficial structure to elicit robust immune responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app