Add like
Add dislike
Add to saved papers

Activation of ChAT+ neuron in dorsal motor vagus (DMV) increases blood glucose through the regulation of hepatic gene expression in mice.

Brain Research 2024 January 23
The brain and peripheral organs communicate through hormones and neural connections. Proper communication is required to maintain normal whole-body energy homeostasis. In addition to endocrine system, from the perspective of neural connections for metabolic homeostasis, the role of the sympathetic nervous system has been extensively studied, but understanding of the parasympathetic nervous system is limited. The liver plays a central role in glucose and lipid metabolism. This study aimed to clarify the innervation of parasympathetic nervous system in the liver and its functional roles in metabolic homeostasis. The liver-specific parasympathetic nervous system innervation (PNS) was shown by tissue clearing, immunofluorescence and transgenic mice at the three-dimensional histological level. The parasympathetic efferent signals were manipulated using a chemogenetic technique and the activation of ChAT+ parasympathetic neurons in dorsal motor vagus (DMV) results in the increased blood glucose through the elevated hepatic gluconeogenic and lipogenic gene expression in the liver. Thus, our study showed the evidence of ChAT+ parasympathetic neurons in the liver and its role for hepatic parasympathetic nervous signaling in glucose homeostasis through the regulation of hepatic gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app